
An Overview of Pre-Processing Text Clustering
Methods.

 D Sailaja M.V.Kishore B.Jyothi N.R.G.K.Prasad
Asst.Professo
r ANITS.

Asst.Professo
r ANITS.

 Asst.Professor
GITAM.

Asst.Professor
SAIGANAPATHIENGG

COLLEGE

Abstract:In the last decades digital forensics has become a
prominent activity in modern investigations. Seized digital
devices can provide precious information and evidences about
facts and/or individuals on which the investigational activity is
performed. Due to the complexity of this inquiring activity
and to the large amount of the data to be analyzed, the choice
of appropriate digital tools to support the investigation
represents a central concern. In this paper, an effective digital
text analysis strategy, relying on clustering based text mining
techniques, is introduced for investigational purposes. The
proposed methodology is experimentally applied to the Email
dataset of an organization that well fits a plausible forensics
analysis context.

INTRODUCTION:
 Clustering algorithms can be applied to text mining to
allow the automatic recognition of some sort of structure in
the analyzed set of documents. In particular, clustering is
designed to discover groups in the set of documents such
that the documents within a group are more similar to one
another than to documents of other groups. The core idea is
to provide the analyst with clusters including documents
semantically related, as a starting point for determining
investigation paths.
 Most text clustering algorithms rely on the so-called
vector-space model. In this model, each text document d is
represented by a vector of frequencies of the remaining m
terms:

 d= (tf1,…,tfm)
Often, the document vectors are normalized to unit length
to allow comparison of documents of different lengths.
Note that the vector-space has a very high dimensionality
since even after pre-processing there are typically still
several thousands of terms, in many text databases you
have to deal with approximately 10,000 terms. Due to the
high dimensionality, most frequencies are zero for any
single document.
To measure the similarity between two documents d1 and
d2 represented in the vector space model, typically the
cosine measure is used which is defined by the cosine of
the angle between the two vectors:
 similarity(d1,d2) = (d1.d2) /(|d1|.|d2|)
where • denotes the vector dot product and | | denotes the
length of a vector.
The standard clustering algorithms can be categorized into
partitioning algorithms such as k-means or k-medoid and
hierarchical algorithms such as Single-Link or Average-
Link. Scatter/Gather is a well-known algorithm which has
been proposed for a document browsing system based on
clustering. It uses a hierarchical clustering algorithm to

determine an initial clustering which is then refined using
the k-means clustering algorithm. Many variants of the k-
means algorithm have been proposed for the purpose of
text clustering, in particular to determine a good initial
clustering. A recent study has compared partitioning and
hierarchical methods of text clustering on a broad variety of
test datasets. It concludes that k-means clearly outperforms
the hierarchical methods with respect to clustering quality.
Note that k-means is also much more efficient than
hierarchical clustering algorithms. Furthermore, a variant of
k-means called bisecting k-means is introduced, which
yields even better performance. Bisecting k-means uses k-
means to partition the dataset into two clusters. Then it
keeps partitioning the currently largest cluster into two
clusters, again using k-means, until a total number of k
clusters has been discovered.

OBJECTIVE
Digital evidence, as defined as the information and data of
investigative value that are stored on, received, or
transmitted by a digital device, has become lately a crucial
component in law enforcement agencies investigations. The
relevance of this kind of evidence, collected when
electronic data and devices are seized, is established by
digital forensics analysts, which more and more often have
to deal with massive amounts of data, still increasing with
the capacity of mass storage devices.
Textual information represents one of the core data sources
that may contain significant information. The amount of
available textual data is usually extremely large , in the
order of thousands of texts. The analyst, in this context,
encounters objective difficulties in data content analysis
and in finding important investigational patterns.
In this paper, a two-steps process is proposed, based on
(1) Textual information extraction.
(2) Textual data analysis via clustering.
This work addresses text clustering for forensics analysis
based on a dynamic, adaptive clustering model to arrange
unstructured documents into content-based homogeneous
groups.
This work presented, shows that the text clustering
framework can find consistent structures suitable for
investigative issues that can considerably aid the analyst
during the inquiry activity.

Text Clustering with Python
To cluster a set of documents using Python it involves:
a) Tokenizing and stemming each synopsis
b) Transforming the corpus into vector space using tf-idf

 D Sailaja et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 3119-3124

www.ijcsit.com 3119

 c) Calculating cosine distance between each document as a
measure of similarity
d) Clustering the documents using the k-means algorithm
 e) Using multidimensional scaling to reduce
dimensionality within the corpus
f) Plotting the clustering output using matplotlib and mpld3
 Synopsis:
The entire text present in each document.
Corpus:
Collection of documents.

a) Tokenizing and stemming each synopsis:
NLTK:
The Natural Language Toolkit, or more commonly
NLTK, is a suite of libraries and programs for symbolic
and statistical natural language processing (NLP) for the
Python programming language. NLTK includes graphical
demonstrations and sample data. It is accompanied by a
book that explains the underlying concepts behind the
language processing tasks supported by the toolkit.
NLTK is intended to support research and teaching in NLP
or closely related areas, including empirical linguistics,
cognitive science, artificial intelligence, information
retrieval, and machine learning. NLTK has been used
successfully as a teaching tool, as an individual study tool,
and as a platform for prototyping and building research
systems.
The core functionality of NumPy is its "ndarray", for n-
dimensional array, data structure. These arrays are strided
views on memory. In contrast to Python's built-in list data
structure (which, despite the name, is a dynamic array),
these arrays are homogeneously typed: all elements of a
single array must be of the same type.
Such arrays can also be views into memory buffers
allocated by C/C++. Cython and Fortran extensions to the
CPython interpreter without the need to copy data around,
giving a degree of compatibility with existing numerical
libraries. This functionality is exploited by the SciPy
package, which wraps a number of such libraries (notably
BLAS and LAPACK). NumPy has built-in support for
memory-mapped ndarrays.
Pandas:
Pandas is a software library written for the Python
programming language for data manipulation and analysis.
In particular, it offers data structures and operations for
manipulating numerical tables and time series. Pandas is
free software released under the three-clause BSD license.
Data Frame:
Two-dimensional size-mutable, potentially heterogeneous
tabular data structure with labeled axes (rows and
columns). Arithmetic operations align on both row and
column labels. Can be thought of as a dict-like container
for Series objects. The primary pandas data structure
includes:
pandas.DataFrame(data=None, index=None,
columns=None, dtype=None, copy=False)

Tokenizing:
It is the process of breaking a stream of text up into words,
phrases, symbols, or other meaningful elements called

tokens. The list of tokens becomes input for further
processing such as parsing or text mining. Tokenization is
useful both in linguistics (where it is a form of text
segmentation), and in computer science, where it forms part
of lexical analysis. Typically, tokenization occurs at the
word level. However, it is sometimes difficult to define
what is meant by a "word".
Often a tokenizer relies on simple heuristics, for example:
 Punctuation and whitespace may or may not be

included in the resulting list of tokens.
 All contiguous strings of alphabetic characters are part

of one token; likewise with numbers
 Tokens are separated by whitespace characters, such as

a space or line break, or by punctuation characters.
Stemming:
Stemming is the term used in linguistic morphology and
information retrieval to describe the process for reducing
inflected (or sometimes derived) words to their word stem,
base or root form generally a written word form. The stem
needs not to be identical to the morphological root of the
word; it is usually sufficient that related words map to the
same stem, even if this stem is not in itself a valid root.
Many search engines treat words with the same stem as
synonyms as a kind of query expansion, a process called
conflation.
Lookup algorithms for Stemmer:
A simple stemmer looks up the inflected form in a lookup
table. The advantages of this approach is that it is simple,
fast, and easily handles exceptions. The disadvantages are
that all inflected forms must be explicitly listed in the table:
new or unfamiliar words are not handled, even if they are
perfectly regular (e.g. iPads ~ iPad), and the table may be
large. For languages with simple morphology, like English,
table sizes are modest, but highly inflected languages like
Turkish may have hundreds of potential inflected forms for
each root.
A lookup approach may use preliminary part-of-speech
tagging to avoid overstemming.
The Production technique for Stemmer:
 The lookup table used by a stemmer is generally produced
semi-automatically. For example, if the word is "run", then
the inverted algorithm might automatically generate the
forms "running", "runs", "runned", and "runly". The last
two forms are valid constructions, but they are unlikely.
Some examples of the rules include:

 if the word ends in 'ed', remove the 'ed'
 if the word ends in 'ing', remove the 'ing'
 if the word ends in 'ly', remove the 'ly'

Snowball Stemmer:
 Snowball is a small string processing programming
language designed for creating stemming algorithms for
use in information retrieval. Based on Snowball algorithm,
given string is stemmed using Snowball Stemmer.
Stopword Removal:
stopwords are words which are filtered out before or after
processing of natural language data (text).There is no single
universal list of stop words used by all processing of
natural language tools, and indeed not all tools even use
such a list. Some tools specifically avoid removing these
stopwords to support phrase search.

 D Sailaja et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 3119-3124

www.ijcsit.com 3120

Any group of words can be chosen as the stop words for a
given purpose. For some search engines, these are some of
the most common, short function words, such as the, is, at,
which, on.. etc.
b) Transforming the corpus into vector space using tf-
idf:
Tf-idf stands for term frequency-inverse document
frequency, and the tf-idf weight is a weight often used in
information retrieval and text mining. This weight is a
statistical measure used to evaluate how important a word
is to a document in a collection or corpus. The importance
increases proportionally to the number of times a word
appears in the document but is offset by the frequency of
the word in the corpus. Variations of the tf-idf weighting
scheme are often used by search engines as a central tool in
scoring and ranking a document's relevance given a user
query.One of the simplest ranking functions is computed by
summing the tf-idf for each query term; many more
sophisticated ranking functions are variants of this simple
model.
Tf-idf can be successfully used for stop-words filtering in
various subject fields including text summarization and
classification.
How to Compute:
Typically, the tf-idf weight is composed by two terms: the
first computes the normalized Term Frequency (TF): the
number of times a word appears in a document, divided by
the total number of words in that document; the second
term is the Inverse Document Frequency (IDF), computed
as the logarithm of the number of the documents in the
corpus divided by the number of documents where the
specific term appears.
 TF: Term Frequency, which measures how

frequently a term occurs in a document. Since every
document is different in length, it is possible that a
term would appear much more times in long
documents than shorter ones. Thus, the term frequency
is often divided by the document length (i.e. the total
number of terms in the document)
TF(t) = (Number of times term t appears in a
document) / (Total number of terms in the document).

 IDF: Inverse Document Frequency, which measures
how important a term is. While computing TF, all
terms are considered equally important. However it is
known that certain terms, such as "is", "of", and "that",
may appear a lot of times but have little importance.
Thus we need to weigh down the frequent terms while
scale up the rare ones, by computing the following:

 IDF(t) = log e (Total number of documents / Number of
documents with term t in it).

To get a Tf-idf matrix, first count word occurrences by
document. This is transformed into a document-term matrix
(dtm). This is also just called a term frequency matrix.
Sklearn:
 Simple and efficient tools for data mining and data

analysis
 Accessible to everybody, and reusable in various

contexts
 Built on NumPy, SciPy, and matplotlib
 Open source, commercially usable - BSD license

Feature Extraction:
In machine learning, pattern recognition and in image
processing, feature extraction starts from an initial set of
measured data and builds derived values (features) intended
to be informative, non redundant, facilitating the
subsequent learning and generalization steps, in some cases
leading to better human interpretations. Feature extraction
is related to dimensionality reduction.
Feature extraction involves reducing the amount of
resources required to describe a large set of data. When
performing analysis of complex data one of the major
problems stems from the number of variables involved.
Analysis with a large number of variables generally
requires a large amount of memory and computation power
or a classification algorithm which overfits the training
sample and generalizes poorly to new samples. Feature
extraction is a general term for methods of constructing
combinations of the variables to get around these problems
while still describing the data with sufficient accuracy.
Joblib:
Joblib is a set of tools to provide lightweight pipelining in
Python. In particular, joblib offers:

1. transparent disk-caching of the output
values and lazy re-evaluation (memoize pattern)
2. easy simple parallel computing
3. logging and tracing of the execution

Joblib is optimized to be fast and robust in particular on
large data and has specific optimizations for numpy arrays.
The vision is to provide tools to easily achieve better
performance and reproducibility when working with long
running jobs.
 Avoid computing twice the same thing: code is rerun

over an over, for instance when prototyping
computational-heavy jobs (as in scientific
development), but hand-crafted solution to alleviate
this issue is error-prone and often leads to
unreproducible results

 Persist to disk transparently: persisting in an
efficient way arbitrary objects containing large data is
hard. Using joblib’s caching mechanism avoids hand-
written persistence and implicitly links the file on disk
to the execution context of the original Python object.
As a result, joblib’s persistence is good for resuming
an application status or computational job, eg after a
crash.

c) Calculating Cosine distance :
Cosine similarity is a measure of similarity between two
vectors of an inner product space that measures the cosine
of the angle between them. The cosine of 0° is 1, and it is
less than 1 for any other angle. It is thus a judgement of
orientation and not magnitude: two vectors with the same
orientation have a cosine similarity of 1, two vectors at 90°
have a similarity of 0, and two vectors diametrically
opposed have a similarity of -1, independent of their
magnitude. Cosine similarity is particularly used in positive
space, where the outcome is neatly bounded in [0,1].
These bounds apply for any number of dimensions, and
cosine similarity is most commonly used in high-
dimensional positive spaces. For example, in information
retrieval and text mining, each term is notionally assigned a

 D Sailaja et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 3119-3124

www.ijcsit.com 3121

different dimension and a document is characterized by a
vector where the value of each dimension corresponds to
the number of times that term appears in the document.
Cosine similarity then gives a useful measure of how
similar two documents are likely to be in terms of their
subject matter.
dist is defined as 1 - the cosine similarity of each document.
Cosine similarity is measured against the tf-idf matrix and
can be used to generate a measure of similarity between
each document and the other documents in the corpus (each
synopsis among the synopses). Subtracting it from 1
provides cosine distance which I will use for plotting on a
euclidean (2-dimensional) plane. With dist it is possible to
evaluate the similarity of any two or more synopses. The
technique is also used to measure cohesion within clusters
in the field of data mining.
d) Clustering:
Cluster analysis or clustering is the task of grouping a set
of objects in such a way that objects in the same group
(called a cluster) are more similar (in some sense or
another) to each other than to those in other groups
(clusters). It is a main task of exploratory data mining, and
a common technique for statistical data analysis, used in
many fields, including machine learning, pattern
recognition, image analysis, information retrieval,
and bioinformatics.
Cluster analysis itself is not one specific algorithm, but the
general task to be solved. It can be achieved by various
algorithms that differ significantly in their notion of what
constitutes a cluster and how to efficiently find them.
Popular notions of clusters include groups with
small distances among the cluster members, dense areas of
the data space, intervals or particular statistical
distributions. Clustering can therefore be formulated as
a multi-objective optimization problem. The appropriate
clustering algorithm and parameter settings (including
values such as the distance function to use, a density
threshold or the number of expected clusters) depend on the
individual data set and intended use of the results. Cluster
analysis as such is not an automatic task, but an iterative
process of knowledge discovery or interactive multi-
objective optimization that involves trial and failure. It will
often be necessary to modify data preprocessing and model
parameters until the result achieves the desired properties
k-means clustering algorithm
k-means is one of the simplest unsupervised learning
algorithms that solve the well known clustering problem.
The procedure follows a simple and easy way to classify
a given data set through a certain number of clusters
(assume k clusters) fixed apriori. The main idea is to
define k centers, one for each cluster. These centers
should be placed in a cunning way because of different
 location causes different result. So, the better choice is
to place them as much as possible far away from each
other. The next step is to take each point belonging to a
given data set and associate it to the nearest center. When
no point is pending, the first step is completed and an
early group age is done. At this point we need to re-
calculate k new centroids as barycenter of the clusters
resulting from the previous step. After we have these k new

centroids, a new binding has to be done between the same
data set points and the nearest new center. A loop has been
generated. As a result of this loop we may notice that the
k centers change their location step by step until no more
changes are done or in other words centers do not move
any more. Finally, this algorithm aims at minimizing an
objective function know as squared error function given
by:

where,
 ‘||xi - vj||’ is the Euclidean distance between xi and vj.
‘ci’ is the number of data points in ith cluster. ‘c’ is the
number of cluster centers.
Algorithmic steps for k-means clustering
Let X = {x1,x2,x3,……..,xn} be the set of data points and V
= {v1,v2,…….,vc} be the set of centers.
1) Randomly select ‘c’ cluster centers.
2) Calculate the distance between each data point and
cluster centers.
3) Assign the data point to the cluster center whose
distance from the cluster center is minimum of all the
cluster centers..
4) Recalculate the new cluster center using:

where, ‘ci’ represents the number of data points in ith

cluster.
5) Recalculate the distance between each data point and
new obtained cluster centers.
6) If no data point was reassigned then stop, otherwise
repeat from step (3).

e) Multi-dimensionality Scaling:
Bag of Words (BoW):
In text search and classification of text, word order
contributes less to the search result or document
classification unless it is part of a phrase. Therefore, it is a
common practice to use the frequency of occurrence of
words sacrificing the word order which is known as "bag of
words". In this document representation method, document
is converted to vectors by simply counting number of
occurrence of words. For example, the following two
sentences would have the same vector representation: "I am
who I become" and "I become who I am" as the frequency
of occurrence of words are same even though the word
order is different. The rationality behind of this document
representation is that, the presence and count of words do
matter more than the word sequence in a sentence for
classification. In practice, this representation is "lingua
franca" along with tf-idf representation.
J-S Matrix
Say we have N documents and we constructed our J-S
matrix using J-S Divergence for each pair of smoothed bag
of words of documents. This would result in NxM matrix
where the M is the size of our corpus as every document is
represented 1xM vectors. This matrix representation would

 D Sailaja et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 3119-3124

www.ijcsit.com 3122

not solve our curse of dimensionality problem. So, we
introduce a dimensionality reduction method (among many
others) i.e. Multidimensional Scaling.
Multidimensional Scaling (MDS)
Over-simplified idea behind MDS is that if we could find
an embedding which has a significantly lower dimension
for high dimension space and preserve the distance between
observation pairs, we do not lose much in relative sense
since we are keeping the distance between the pairs.
Further, we both reduce dimensionality quite a lot and
preserve the relative distance to each other. This is
somehow different than traditional dimensionality
reduction methods where they they generally scale
individual observations or all of the observations altogether.
MDS seeks to fit a lower embedding for observation pairs.
Since the J-S divergence deals with document pairs, J-S
Divergence matrix could be considered as a dissimilarity
matrix for the documents in that sense. Therefore, it is a
perfect fit for MDS as MDS also tries to reduce the
dimensionality of J-S measure between two documents. We
want to find 2-dimension lower embedding in order to
visualize the documents in a scatter plot but 1-dimension
works as well as any number of dimension could be used
for MDS.
f) Visualizing Clusters:
In Python we can visualize the document clustering output
using matplotlib and mpld3.
Matplotlib:
Matplotlib is a python 2D plotting library which produces
publication quality figures in a variety of hardcopy formats
and interactive environments across platforms. matplotlib
can be used in python scripts, the python and ipython shell ,
web application servers, and six graphical user interface
toolkits.
Some of the advantages of the combination of Python,
NumPy, and matplotlib are:

 Based on Python, a full-featured modern
object-oriented programming language suitable for
large-scale software development
 Free, open source, no license servers
 Native SVG support

Mpld3:
The mpld3 project brings together Matplotlib, the popular
Python-based graphing library, and D3js, the popular
Javascript library for creating interactive data visualizations
for the web. The result is a simple API for exporting your
matplotlib graphics to HTML code which can be used
within the browser, within standard web pages, blogs, or
tools such as the IPython notebook.

CONCLUSION AND FUTURE ENHANCEMENT:
An analyst, using the proposed tool, can exploit the
obtained clusters in order to get useful investigative
information; in particular the tool proves effective when
one has to cope with a notable amount of data, when a
human operator cannot manually proceed to inspection.
In this project, we presented a novel approach for text
clustering. Our experimental evaluation on real text and
hypertext data sets demonstrated that FTC yields a cluster
quality comparable to that of state-of-the-art text clustering

algorithms. However, FTC was significantly more efficient
than its competitors on all test data sets. Furthermore, FTC
automatically generates a natural description for the
generated clusters by their frequent term sets

Fig 1: All words stemmed

Fig 2: All words tokenized

Fig 3: Clusters Plot

Future Enhancements:
Finally, we would like to outline a few directions for future
research. We already mentioned that the integration of a
more advanced algorithm for the generation of frequent
term sets could significantly speed-up FTC and HFTC.
FTC is a greedy algorithm. Other paradigms such as
dynamic programming might also be adopted to solve the
frequent term-based clustering problem and should be
explored. Hierachical clusterings are of special interest for
many applications. However, the well-known measures of
hierarchical clustering quality do not adequately capture the
quality from a user’s perspective. New methods should be
developed for this purpose. The proposed clustering
algorithms have promising applications such as a front end
of a web search engine. Due to the similarity of text data
and transaction data, our methods can also be used on
transaction data, e.g. for market segmentation. We plan to
investigate these applications in the future.

 D Sailaja et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 3119-3124

www.ijcsit.com 3123

REFERENCES:
[1] Sergio Decherchi, Simone Tacconi “Text Clustering for Digital

Forensics Analysis ”Frequent Term-Based Text Clustering
[2] Mena, J.: Investigative Data Mining for Security and Criminal

Detection. Butterworth-Heinemann (2003)
[3] Sullivan, D.: Document warehousing and text mining. John Wiley

and Sons (2001)
[4] Fan, W., Wallace, L., Rich, S., Zhang, Z.: “Tapping the power of

text mining”. Comm. of the ACM. 49, 76—82 (2006)
[5] Decherchi, S., Gastaldo, P., Redi, J., Zunino, R.:Hypermetric k-

means clustering for content-based document management, First
Workshop on Computational Intelligence in Security for Information
Systems, Genova. (2008)

[6] The Enron Email Dataset, http://www2.cs.cmu.edu/~enron/
[7] Carrier, B., File System Forensic Analysis, Addison Wesley,2005

 D Sailaja et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 3119-3124

www.ijcsit.com 3124

